Industrially relevant hydrolyzability and fermentability of sugarcane bagasse improved effectively by glycerol organosolv pretreatment
نویسندگان
چکیده
BACKGROUND Previous work has demonstrated that glycerol organosolv pretreatment can effectively improve the hydrolyzability of various lignocellulosic substrates. This pretreatment process strategy is ideal to integrate a commercially successful lignocellulosic and vegetable oil biorefinery industry. However, industrially relevant high-solid-loading hydrolyzability and fermentability of the pretreated substrates have yet to be considered for enzyme-based lignocellulosic biorefineries. RESULTS In this study, an AGO pretreatment of sugarcane bagasse was evaluated with regard to the component selectivity, structural modification, hydrolyzability, and fermentation of pretreated substrates. The results showed that the AGO pretreatment presented good component selectivity, removing approximately 70 % lignin and hemicellulose, respectively, from sugarcane bagasse with a near-intact preservation (94 %) of the overall cellulose. The pretreatment deconstructed the recalcitrant architecture of natural lignocellulosic biomass, thereby modifying the structure at the macro-/micrometer level (fiber size, surface area, average size, roughness) and supermolecular level (key chemical bond dissociation) of lignocellulosic substrates towards good hydrolyzability. Notably, extraordinarily few fermentation inhibitors (<0.2 g furfural and 5-hydromethyl furfural/kg feedstock) were generated from the AGO pretreatment process, which was apparently due to the prominent role of glycerol organic solvent in protecting monosaccharides against further degradation. The 72-h enzymatic hydrolysis of pretreated substrates at 15 % solid content achieved 90 % completion with Cellic CTec2 at 10 FPU/g dried substrate. With a simple nutrition (only 10 g/L (NH4)2SO4) addition, the fed-batch semi-SSF of AGO-pretreated substrates (30 % solid content) almost reached 50 g/L ethanol with cellulase preparation at 10 FPU/g dried substrate. These results have revealed that the pretreated substrate is susceptible and accessible to cellulase enzymes, thereafter exhibiting remarkable hydrolyzability and fermentability. CONCLUSION The AGO pretreatment is a promising candidate for the current pretreatment process towards industrially relevant enzyme-based lignocellulosic biorefineries.
منابع مشابه
Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse
BACKGROUND Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. In this study, "green" solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. RESULTS Pretreatment of sugarcane bagasse at 90...
متن کامل2G ethanol from the whole sugarcane lignocellulosic biomass
BACKGROUND In the sugarcane industry, large amounts of lignocellulosic residues are generated, which includes bagasse, straw, and tops. The use of the whole sugarcane lignocellulosic biomass for the production of second-generation (2G) ethanol can be a potential alternative to contribute to the economic viability of this process. Here, we conducted a systematic comparative study of the use of t...
متن کاملBioprocessing of tea oil fruit hull with acetic acid organosolv pretreatment in combination with alkaline H2O2
BACKGROUND As a natural renewable biomass, the tea oil fruit hull (TOFH) mainly consists of lignocellulose, together with some bioactive substances. Our earlier work constructed a two-stage solvent-based process, including one aqueous ethanol organosolv extraction and an atmospheric glycerol organosolv (AGO) pretreatment, for bioprocessing of the TOFH into diverse bioproducts. However, the AGO ...
متن کاملProduction of Single Cell Protein from Sugarcane Bagasse by Saccharomyces cerevisiae in Tray Bioreactor
In this study, solid state fermentation (SSF) was carried out to produce single cell protein (SCP) from sugarcane bagasse using Saccharomyces cerevisiae. The SSF experiment were performed in a tray bioreactor. The influence of several parameters including extraction buffer, initial moisture content of substrate, fermentation time, relative humidity in bioreactor, the bioreactor temperature and ...
متن کاملOrganosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol
BACKGROUND The primary components of lignocellulosic biomass such as sorghum bagasse are cellulose, hemicellulose, and lignin. Each component can be utilized as a sustainable resource for producing biofuels and bio-based products. However, due to their complicated structures, fractionation of lignocellulosic biomass components is required. Organosolv pretreatment is an attractive method for thi...
متن کامل